

Информационный бюллетень для продавцов и потребителей компрессорного и пневматического оборудования

ФИЛЬТРАЦИЯ СЖАТОГО ВОЗДУХА

Мы продолжаем публикацию материалов, посвященных подготовке сжатого воздуха. Тема сегодняшнего номера— фильтрация сжатого воздуха и оборудование для обработки конденсата.

Очистка сжатого воздуха – это удаление из него твердых частиц и масла. По данным компаний-производителей фильтрующих элементов, атмосферный воздух, всасываемый компрессором, может содержать в 1 м³ до 180 млн частиц пыли, а содержание масла в нем составляет 0,01... 0,03 мг/м³. При сжатии, например, до 10 бар избыточного давления, концентрация загрязняющих веществ увеличивается в 11 раз и в 1 м³ сжатого воздуха будет содержаться уже более 2 млрд частиц пыли. Кроме того, источником загрязнения воздуха является и сам компрессор. В зависимости от типа компрессора в сжатый воздух добавляется от $2-3 \text{ мг/м}^3$ (после винтового) до 50 мг/м^3 (после поршневого) масла в виде аэрозоли и пара. Поэтому, исходя от конкретных требований, сжатый воздух подлежит той или иной очистке.

Фильтрующие элементы: классификация и назначение, порядок выбора

В зависимости от требований, предъявляемых к качеству сжатого воздуха, предполагается использование системы из четырех фильтров для удаления масла и твердых частиц.

1. Фильтр предварительной очистки FQ. Фильтр задерживает твердые частицы и эмульсии размером свыше 3 мкм. Обычно устанавливается после охладителя и циклонного сепаратора перед рефрижераторным осушителем. Задача это фильтра в первую очередь защита испарителя в осушителе от достаточно крупных твердых частиц и капель масла, содержащихся в воздухе. Установка фильтра такого

класса позволяет обеспечить 3 класс чистоты (здесь и далее Стандарт DIN ISO 8573-1) по твердым частицам и 3 (4) класс чистоты по содержанию масла.

- 2. Фильтр тонкой очистки FP. Фильтр задерживает частицы свыше 1 мкм, включая капли масла. Максимальное остаточное содержание масла на выходе из фильтра 0,1 мг/м³. Обычно устанавливается на выходе из рефрижераторного осушителя и используется для предотвращения коррозии трубопроводов, а также как предварительный фильтр перед микрофильтром. Установка фильтра такого класса позволяет обеспечить 2 класс чистоты по твердым частицам и 2 класс чистоты по содержанию масла.
- 3. Микрофильтр FD. Маслоулавливающий фильтр, задерживает остатки масла и микрочастицы размером свыше 0,01 мкм.

Попра	Поправочный коэффициент в зависимости от рабочего давления														
Бар	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Коэф.	0.38	0.5	0.65	0.75	0.88	1.00	1.13	1.25	1.38	1.5	1.63	1.75	1.88	2.00	2.13

Максимальное остаточное содержание масла на выходе из фильтра 0,01 мг/м³. Используется для защиты систем пневмоуправления, в пневмотранспорте и при покраске. Установка фильтра такого класса позволяет обеспечить 1 класс чистоты по твердым частицам и 1 класс чистоты по содержанию масла.

4. Фильтр на основе активированного угля FC. Фильтр на основе активированного угля служит для устранения паров и запахов масла. Максимальное остаточное содержание масла на выходе из фильтра не превышает 0,003 мг/м³. Используется в фармацевтической промышленности, в стоматологии, в пищевой промышленности, системах упаковки. В технике фильтр данного класса применения практически не находит.

Для достижения высокого качества воздуха, а также, продления срока службы сменных фильтрующих элементов рекомендуется устанавливать эти фильтры последовательно.

Выбор типоразмеров фильтров производится с помощью таблицы корректирующих коэффициентов (Табл. 1). Производительность фильтра, указанная в технических характеристиках, соответствует номинальным рабочим условиям (давлению воздуха на входе в фильтр 7 бар).

С повышением рабочего давления повышается и пропускная способность фильтра. Для всех фильтров ограничение по максимальному давлению составляет 16 бар, а максимальная температура входящего сжатого воздуха не должна превышать +60°C.

Особенности применения фильтров

Одним из важнейших показателей, позволяющих оценить эффективность работы фильтра, является дифференциальное давление. Дифференциальное давление — это величина, определяемая как разность между давлением на входе в фильтр и давлением на выходе из него. По сути, дифференциальное давление показывает степень сопротивления фильтра воздушному потоку. Чем выше величина дифференциального давления, тем сильнее загрязнен фильтрующий элемент. Контроль дифференциального давления осу-

ществляется по манометру, установленному на фильтре.

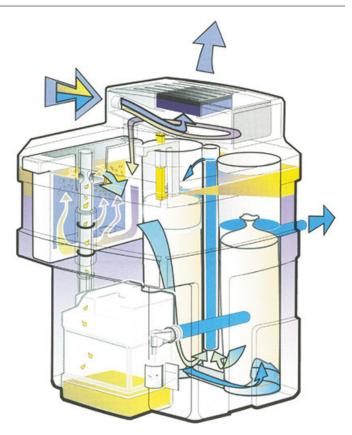
Падение давления происходит даже при установке нового фильтра (примерно от 0,05 до 0,2 бар). По мере работы картридж фильтра загрязняется, и величина дифференциального давления растет. Считается, что замена сменного картриджа должна происходить, если дифференциальное давление превышает 0,5 бар (на шкале манометров на загрязнение фильтра указывает «красная зона»). Можно, конечно, эксплуатировать фильтр и при большем значении дифференциального давления, но это нецелесообразно с точки зрения энергоэффективности.

Скорость загрязнения сменного картриджа (соответственно и увеличения дифференциального давления) зависит от интенсивности использования фильтра. Кроме того, большое значение имеет и своевременное обслуживание фильтра, заключающееся в своевременном отводе из него конденсата.

Фильтры бывают двух типов: с ручным отводом конденсата и с автоматическим отводом. Первые дешевле, но в этом случае необходимо учитывать пресловутый «человеческий фактор». Если сотрудник, ответственный за эксплуатацию системы фильтров, забудет своевременно удалить конденсат, то фильтр довольно быстро заполнится конденсатом и придется преждевременно менять сменный картридж. Поэтому, фильтры с автоматическим удалением конденсата предпочтительнее, но они несколько дороже по цене.

В общем случае: при своевременном обслуживании фильтра периодичность замены сменных картриджей составляет в среднем 1-2 раза в год в зависимости от интенсивности эксплуатации.

 q_{Π}


www.fiak.ru

СЕПАРАТОР (РАЗДЕЛИТЕЛЬ) КОНДЕНСАТА

Сепаратор (разделитель) конденсата — заключительный элемент, входящий в комплект оборудования для подготовки сжатого воздуха. Расчеты показывают, что объем конденсата, представляющего собой смесь масла и воды, может достигать нескольких десятков литров в день.

Воздушно-масляный конденсат представляет серьезную угрозу для окружающей среды. Поэтому в большинстве европейских стран слив конденсата в общую канализацию запрещен. Утилизация конденсата должна быть экологически безопасной, что предполагает его разделение на две составляющие — воду и масло. После этого вода удаляется в канализацию, а масло утилизируется в соответствии с действующими нормами и правилами.

Разделение конденсата на масло и воду происходит в сепараторе конденсата. Принцип его работы следующий. Конденсат поступает в декомпрессионную камеру сепаратора, где происходит снижение его скорости, а сжатый воздух выходит в атмосферу через фильтр на основе активированного угля. Затем конденсат поступает в предварительный отстойник, где твердые частицы выпадают в осадок. Далее жидкая фракция перетекает в основной отстойник. В основном отстойнике масло, имеющее меньшую плотность, чем вода, поднимается на поверхность, откуда по специальному каналу стекает в резервуар-маслосборник. В дальнейшем собранное в резервуаре масло утилизируют. Остающаяся в нижней части основного отстойника вода проходит через фильтры и также выводится из сепаратора. Качество воды таково, что она может сливаться в канализацию.

Можно отметить три основных достоинства использования сепаратора конденсата:

- процесс разделения конденсата не требует специальных затрат электроэнергии;
- утилизации подлежит не весь объем отведенного конденсата, а лишь небольшой объем компрессорного масла;
- сепаратор конденсата прост в обслуживании, которое заключается лишь в периодической замене фильтров.

Сегодня сепараторы конденсата пока еще не находят широкого применения на отечественных промышленных предприятиях. Но по мере ужесточения экологических требований их количество, безусловно, будет возрастать.

Р.S. ШУТКИ НА ВЕТЕР

«Однажды на горном серпантине в Таджикистане поймал я ЗИЛ-130. Водила вез прицепленный к кузову компрессор и непрерывно травил байки на тему, кто, как и где навернулся и что с ним потом было со всеми натуралистическими подробностями. А я смотрел по сторонам и представлял, как мы сейчас навернемся, и что с нами потом будет. Вдруг шофер заорал как резаный:

- Смотри, смотри - кто-то в пропасть сорвался! Вот урод!

Но тут он посмотрел в зеркало заднего вида, осекся и обреченно произнес:

- #б твою мать, да это же наш компрессор...

Вторую половину пути мы проехали в полном молчании».

По материалам сайта http://stories.live4fun.ru